U
    /e%                     @   s>   d dl Z d dlmZ dddZd	d
 ZdddZdddZdS )    N)import_required
2000-01-01
2000-01-311s1dc              	   K   s>   ddl m} |dkr"ttttd}|f | |||||d|S )a  Create timeseries dataframe with random data

    Parameters
    ----------
    start : datetime (or datetime-like string)
        Start of time series
    end : datetime (or datetime-like string)
        End of time series
    dtypes : dict (optional)
        Mapping of column names to types.
        Valid types include {float, int, str, 'category'}
    freq : string
        String like '2s' or '1H' or '12W' for the time series frequency
    partition_freq : string
        String like '1M' or '2Y' to divide the dataframe into partitions
    seed : int (optional)
        Randomstate seed
    kwargs:
        Keywords to pass down to individual column creation functions.
        Keywords should be prefixed by the column name and then an underscore.

    Examples
    --------
    >>> import dask
    >>> df = dask.datasets.timeseries()
    >>> df.head()  # doctest: +SKIP
              timestamp    id     name         x         y
    2000-01-01 00:00:00   967    Jerry -0.031348 -0.040633
    2000-01-01 00:00:01  1066  Michael -0.262136  0.307107
    2000-01-01 00:00:02   988    Wendy -0.526331  0.128641
    2000-01-01 00:00:03  1016   Yvonne  0.620456  0.767270
    2000-01-01 00:00:04   998   Ursula  0.684902 -0.463278
    >>> df = dask.datasets.timeseries(
    ...     '2000', '2010',
    ...     freq='2H', partition_freq='1D', seed=1,  # data frequency
    ...     dtypes={'value': float, 'name': str, 'id': int},  # data types
    ...     id_lam=1000  # control number of items in id column
    ... )
    r   )make_timeseriesN)nameidxy)startendfreqpartition_freqseeddtypes)Zdask.dataframe.io.demor   strintfloat)r   r   r   r   r   r   kwargsr    r   1/tmp/pip-unpacked-wheel-dbjnr7gq/dask/datasets.py
timeseries   s    0r   c                    sL   ddl m}m} |f d|i  | fdddfddt|D S )	zdGenerate data for a single partition of a dask bag

    See Also
    --------
    _make_mimesis
    r   )FieldSchemar   c                      s    S )Nr   r   )fieldschema_descriptionr   r   <lambda>P       z#_generate_mimesis.<locals>.<lambda>schemac                    s   g | ]} j d dd qS )   )Z
iterationsr   )create).0ir   r   r   
<listcomp>Q   s     z%_generate_mimesis.<locals>.<listcomp>)Zmimesis.schemar   r   range)r   r   records_per_partitionr   r   r   r   )r   r    r   r   _generate_mimesisF   s    r(   c           	         s~   ddl m} ddlm}  pi  t|fddt|D }d| ||  fddt|D }|||S )	a  
    Make a Dask Bag filled with data randomly generated by the mimesis projet

    Parameters
    ----------
    field: dict
        keyword arguments to pass to ``mimesis.Field``
    schema: Callable[Field] -> dict
        The schema to use to generate the data
    npartitions: int
    records_per_partition: int
    seed: int, None
        Seed for random data

    Returns
    -------
    Dask Bag

    See Also
    --------
    make_people
    r   N)tokenizec                    s   g | ]}  d dqS )r   l        )randint)r#   _)random_stater   r   r%   q   s     z!_make_mimesis.<locals>.<listcomp>zmimesis-c                    s$   i | ]\}}|ft  |fqS r   )r(   )r#   r$   r   )r   r   r'   r    r   r   
<dictcomp>v   s    z!_make_mimesis.<locals>.<dictcomp>)	Zdask.bagZbagZ	dask.baser)   randomRandomr&   	enumerateZBag)	r   r    npartitionsr'   r   dbr)   ZseedsZdskr   )r   r   r,   r'   r    r   _make_mimesisT   s     
    r3   
     enc                 C   s&   t dd dd }td|i|| ||S )a  Make a dataset of random people

    This makes a Dask Bag with dictionary records of randomly generated people.
    This requires the optional library ``mimesis`` to generate records.

    Parameters
    ----------
    npartitions : int
        Number of partitions
    records_per_partition : int
        Number of records in each partition
    seed : int, (optional)
        Random seed
    locale : str
        Language locale, like 'en', 'fr', 'zh', or 'ru'

    Returns
    -------
    b: Dask Bag
    ZmimesiszWThe mimesis module is required for this function.  Try:
  python -m pip install mimesisc                 S   sF   | d| d| df| d| d| d| dd| d	| d
ddS )Nz
person.agezperson.namezperson.surnamezperson.occupationzperson.telephonezaddress.addresszaddress.city)addressZcityzpayment.credit_card_numberz#payment.credit_card_expiration_date)numberzexpiration-date)Zager   Z
occupationZ	telephoner7   zcredit-cardr   )r   r   r   r   r      s    zmake_people.<locals>.<lambda>locale)r   r3   )r1   r'   r   r9   r    r   r   r   make_people~   s        r:   )r   r   r   r   NN)N)r4   r5   Nr6   )r.   Z
dask.utilsr   r   r(   r3   r:   r   r   r   r   <module>   s         
@
*