from __future__ import annotations import asyncio import contextlib import functools import logging import os import time from collections import defaultdict from collections.abc import Callable, Iterator from concurrent.futures import ThreadPoolExecutor from typing import TYPE_CHECKING, Any, TypeVar, overload import toolz from dask.utils import parse_bytes from distributed.core import PooledRPCCall from distributed.protocol import to_serialize from distributed.shuffle._arrow import ( deserialize_schema, dump_shards, list_of_buffers_to_table, load_partition, serialize_table, ) from distributed.shuffle._comms import CommShardsBuffer from distributed.shuffle._disk import DiskShardsBuffer from distributed.shuffle._limiter import ResourceLimiter from distributed.shuffle._shuffle import ShuffleId from distributed.utils import log_errors, sync if TYPE_CHECKING: import pandas as pd import pyarrow as pa from distributed.worker import Worker T = TypeVar("T") logger = logging.getLogger(__name__) class ShuffleClosedError(RuntimeError): pass class Shuffle: """State for a single active shuffle This object is responsible for splitting, sending, receiving and combining data shards. It is entirely agnostic to the distributed system and can perform a shuffle with other `Shuffle` instances using `rpc` and `broadcast`. The user of this needs to guarantee that only `Shuffle`s of the same unique `ShuffleID` interact. Parameters ---------- worker_for: A mapping partition_id -> worker_address. output_workers: A set of all participating worker (addresses). column: The data column we split the input partition by. schema: The schema of the payload data. id: A unique `ShuffleID` this belongs to. local_address: The local address this Shuffle can be contacted by using `rpc`. directory: The scratch directory to buffer data in. nthreads: How many background threads to use for compute. loop: The event loop. rpc: A callable returning a PooledRPCCall to contact other Shuffle instances. Typically a ConnectionPool. broadcast: A function that ensures a RPC is evaluated on all `Shuffle` instances of a given `ShuffleID`. memory_limiter_disk: memory_limiter_comm: A ``ResourceLimiter`` limiting the total amount of memory used in either buffer. """ def __init__( self, worker_for: dict[int, str], output_workers: set, column: str, schema: pa.Schema, id: ShuffleId, local_address: str, directory: str, nthreads: int, rpc: Callable[[str], PooledRPCCall], broadcast: Callable, memory_limiter_disk: ResourceLimiter, memory_limiter_comms: ResourceLimiter, ): import pandas as pd self.broadcast = broadcast self.rpc = rpc self.column = column self.id = id self.schema = schema self.output_workers = output_workers self.executor = ThreadPoolExecutor(nthreads) partitions_of = defaultdict(list) self.local_address = local_address for part, addr in worker_for.items(): partitions_of[addr].append(part) self.partitions_of = dict(partitions_of) self.worker_for = pd.Series(worker_for, name="_workers").astype("category") self.closed = False self._disk_buffer = DiskShardsBuffer( dump=dump_shards, load=load_partition, directory=directory, memory_limiter=memory_limiter_disk, ) self._comm_buffer = CommShardsBuffer( send=self.send, memory_limiter=memory_limiter_comms ) # TODO: reduce number of connections to number of workers # MultiComm.max_connections = min(10, n_workers) self.diagnostics: dict[str, float] = defaultdict(float) self.output_partitions_left = len(self.partitions_of.get(local_address, ())) self.transferred = False self.total_recvd = 0 self.start_time = time.time() self._exception: Exception | None = None self._closed_event = asyncio.Event() def __repr__(self) -> str: return f"" @contextlib.contextmanager def time(self, name: str) -> Iterator[None]: start = time.time() yield stop = time.time() self.diagnostics[name] += stop - start async def barrier(self) -> None: self.raise_if_closed() # TODO: Consider broadcast pinging once when the shuffle starts to warm # up the comm pool on scheduler side await self.broadcast(msg={"op": "shuffle_inputs_done", "shuffle_id": self.id}) async def send(self, address: str, shards: list[bytes]) -> None: self.raise_if_closed() return await self.rpc(address).shuffle_receive( data=to_serialize(shards), shuffle_id=self.id, ) async def offload(self, func: Callable[..., T], *args: Any) -> T: self.raise_if_closed() with self.time("cpu"): return await asyncio.get_running_loop().run_in_executor( self.executor, func, *args, ) def heartbeat(self) -> dict[str, Any]: comm_heartbeat = self._comm_buffer.heartbeat() comm_heartbeat["read"] = self.total_recvd return { "disk": self._disk_buffer.heartbeat(), "comm": comm_heartbeat, "diagnostics": self.diagnostics, "start": self.start_time, } async def receive(self, data: list[bytes]) -> None: await self._receive(data) async def _receive(self, data: list[bytes]) -> None: self.raise_if_closed() try: self.total_recvd += sum(map(len, data)) groups = await self.offload(self._repartition_buffers, data) await self._write_to_disk(groups) except Exception as e: self._exception = e raise def _repartition_buffers(self, data: list[bytes]) -> dict[str, list[pa.Table]]: table = list_of_buffers_to_table(data) groups = split_by_partition(table, self.column) assert len(table) == sum(map(len, groups.values())) del data return {k: [v] for k, v in groups.items()} async def _write_to_disk(self, data: dict[str, list[pa.Table]]) -> None: self.raise_if_closed() await self._disk_buffer.write(data) def raise_if_closed(self) -> None: if self.closed: if self._exception: raise self._exception raise ShuffleClosedError( f"Shuffle {self.id} has been closed on {self.local_address}" ) async def add_partition(self, data: pd.DataFrame) -> None: self.raise_if_closed() if self.transferred: raise RuntimeError(f"Cannot add more partitions to shuffle {self}") def _() -> dict[str, list[bytes]]: out = split_by_worker( data, self.column, self.worker_for, ) out = {k: [serialize_table(t)] for k, t in out.items()} return out out = await self.offload(_) await self._write_to_comm(out) async def _write_to_comm(self, data: dict[str, list[bytes]]) -> None: self.raise_if_closed() await self._comm_buffer.write(data) async def get_output_partition(self, i: int) -> pd.DataFrame: self.raise_if_closed() assert self.transferred, "`get_output_partition` called before barrier task" assert self.worker_for[i] == self.local_address, ( f"Output partition {i} belongs on {self.worker_for[i]}, " f"not {self.local_address}. " ) # ^ NOTE: this check isn't necessary, just a nice validation to prevent incorrect # data in the case something has gone very wrong assert ( self.output_partitions_left > 0 ), f"No outputs remaining, but requested output partition {i} on {self.local_address}." await self.flush_receive() try: df = self._read_from_disk(i) with self.time("cpu"): out = df.to_pandas() except KeyError: out = self.schema.empty_table().to_pandas() self.output_partitions_left -= 1 return out def _read_from_disk(self, id: int | str) -> pa.Table: self.raise_if_closed() return self._disk_buffer.read(id) async def inputs_done(self) -> None: self.raise_if_closed() assert not self.transferred, "`inputs_done` called multiple times" self.transferred = True await self._flush_comm() try: self._comm_buffer.raise_on_exception() except Exception as e: self._exception = e raise async def _flush_comm(self) -> None: self.raise_if_closed() await self._comm_buffer.flush() def done(self) -> bool: return self.transferred and self.output_partitions_left == 0 async def flush_receive(self) -> None: self.raise_if_closed() await self._disk_buffer.flush() async def close(self) -> None: if self.closed: await self._closed_event.wait() return self.closed = True await self._comm_buffer.close() await self._disk_buffer.close() try: self.executor.shutdown(cancel_futures=True) except Exception: self.executor.shutdown() self._closed_event.set() def fail(self, exception: Exception) -> None: if not self.closed: self._exception = exception class ShuffleWorkerExtension: """Interface between a Worker and a Shuffle. This extension is responsible for - Lifecycle of Shuffle instances - ensuring connectivity between remote shuffle instances - ensuring connectivity and integration with the scheduler - routing concurrent calls to the appropriate `Shuffle` based on its `ShuffleID` - collecting instrumentation of ongoing shuffles and route to scheduler/worker """ worker: Worker shuffles: dict[ShuffleId, Shuffle] memory_limiter_comms: ResourceLimiter memory_limiter_disk: ResourceLimiter closed: bool def __init__(self, worker: Worker) -> None: # Attach to worker worker.handlers["shuffle_receive"] = self.shuffle_receive worker.handlers["shuffle_inputs_done"] = self.shuffle_inputs_done worker.handlers["shuffle_fail"] = self.shuffle_fail worker.stream_handlers["shuffle-fail"] = self.shuffle_fail worker.extensions["shuffle"] = self # Initialize self.worker = worker self.shuffles = {} self.memory_limiter_comms = ResourceLimiter(parse_bytes("100 MiB")) self.memory_limiter_disk = ResourceLimiter(parse_bytes("1 GiB")) self.closed = False # Handlers ########## # NOTE: handlers are not threadsafe, but they're called from async comms, so that's okay def heartbeat(self) -> dict: return {id: shuffle.heartbeat() for id, shuffle in self.shuffles.items()} async def shuffle_receive( self, shuffle_id: ShuffleId, data: list[bytes], ) -> None: """ Handler: Receive an incoming shard of data from a peer worker. Using an unknown ``shuffle_id`` is an error. """ shuffle = await self._get_shuffle(shuffle_id) await shuffle.receive(data) async def shuffle_inputs_done(self, shuffle_id: ShuffleId) -> None: """ Handler: Inform the extension that all input partitions have been handed off to extensions. Using an unknown ``shuffle_id`` is an error. """ with log_errors(): shuffle = await self._get_shuffle(shuffle_id) await shuffle.inputs_done() if shuffle.done(): # If the shuffle has no output partitions, remove it now; # `get_output_partition` will never be called. # This happens when there are fewer output partitions than workers. assert shuffle._disk_buffer.empty logger.info(f"Shuffle inputs done {shuffle}") await self._register_complete(shuffle) del self.shuffles[shuffle_id] async def shuffle_fail(self, shuffle_id: ShuffleId, message: str) -> None: try: shuffle = self.shuffles[shuffle_id] except KeyError: return exception = RuntimeError(message) shuffle.fail(exception) await shuffle.close() del self.shuffles[shuffle_id] def add_partition( self, data: pd.DataFrame, shuffle_id: ShuffleId, npartitions: int, column: str, ) -> None: shuffle = self.get_shuffle( shuffle_id, empty=data, npartitions=npartitions, column=column ) sync(self.worker.loop, shuffle.add_partition, data=data) async def _barrier(self, shuffle_id: ShuffleId) -> None: """ Task: Note that the barrier task has been reached (`add_partition` called for all input partitions) Using an unknown ``shuffle_id`` is an error. Calling this before all partitions have been added is undefined. """ # Tell all peers that we've reached the barrier # Note that this will call `shuffle_inputs_done` on our own worker as well shuffle = await self._get_shuffle(shuffle_id) await shuffle.barrier() async def _register_complete(self, shuffle: Shuffle) -> None: await shuffle.close() # All the relevant work has already succeeded if we reached this point, # so we do not need to check if the extension is closed. await self.worker.scheduler.shuffle_register_complete( id=shuffle.id, worker=self.worker.address, ) @overload async def _get_shuffle( self, shuffle_id: ShuffleId, ) -> Shuffle: ... @overload async def _get_shuffle( self, shuffle_id: ShuffleId, empty: pd.DataFrame, column: str, npartitions: int, ) -> Shuffle: ... async def _get_shuffle( self, shuffle_id: ShuffleId, empty: pd.DataFrame | None = None, column: str | None = None, npartitions: int | None = None, ) -> Shuffle: "Get a shuffle by ID; raise ValueError if it's not registered." import pyarrow as pa try: shuffle = self.shuffles[shuffle_id] except KeyError: try: result = await self.worker.scheduler.shuffle_get( id=shuffle_id, schema=pa.Schema.from_pandas(empty).serialize().to_pybytes() if empty is not None else None, npartitions=npartitions, column=column, worker=self.worker.address, ) if result["status"] == "ERROR": raise RuntimeError(result["message"]) assert result["status"] == "OK" except KeyError: # Even the scheduler doesn't know about this shuffle # Let's hand this back to the scheduler and let it figure # things out logger.info( "Worker Shuffle unable to get information from scheduler, rescheduling" ) from distributed.worker import Reschedule raise Reschedule() else: if self.closed: raise ShuffleClosedError( f"{self.__class__.__name__} already closed on {self.worker.address}" ) if shuffle_id not in self.shuffles: shuffle = Shuffle( column=result["column"], worker_for=result["worker_for"], output_workers=result["output_workers"], schema=deserialize_schema(result["schema"]), id=shuffle_id, directory=os.path.join( self.worker.local_directory, f"shuffle-{shuffle_id}" ), nthreads=self.worker.state.nthreads, local_address=self.worker.address, rpc=self.worker.rpc, broadcast=functools.partial( self._broadcast_to_participants, shuffle_id ), memory_limiter_disk=self.memory_limiter_disk, memory_limiter_comms=self.memory_limiter_comms, ) self.shuffles[shuffle_id] = shuffle return self.shuffles[shuffle_id] else: if shuffle._exception: raise shuffle._exception return shuffle async def _broadcast_to_participants(self, id: ShuffleId, msg: dict) -> dict: participating_workers = ( await self.worker.scheduler.shuffle_get_participating_workers(id=id) ) return await self.worker.scheduler.broadcast( msg=msg, workers=participating_workers ) async def close(self) -> None: assert not self.closed self.closed = True while self.shuffles: _, shuffle = self.shuffles.popitem() await shuffle.close() ############################# # Methods for worker thread # ############################# def barrier(self, shuffle_id: ShuffleId) -> None: sync(self.worker.loop, self._barrier, shuffle_id) @overload def get_shuffle( self, shuffle_id: ShuffleId, empty: pd.DataFrame, column: str, npartitions: int, ) -> Shuffle: ... @overload def get_shuffle( self, shuffle_id: ShuffleId, ) -> Shuffle: ... def get_shuffle( self, shuffle_id: ShuffleId, empty: pd.DataFrame | None = None, column: str | None = None, npartitions: int | None = None, ) -> Shuffle: return sync( self.worker.loop, self._get_shuffle, shuffle_id, empty, column, npartitions, ) def get_output_partition( self, shuffle_id: ShuffleId, output_partition: int ) -> pd.DataFrame: """ Task: Retrieve a shuffled output partition from the ShuffleExtension. Calling this for a ``shuffle_id`` which is unknown or incomplete is an error. """ shuffle = self.get_shuffle(shuffle_id) output = sync(self.worker.loop, shuffle.get_output_partition, output_partition) # key missing if another thread got to it first if shuffle.done() and shuffle_id in self.shuffles: shuffle = self.shuffles.pop(shuffle_id) sync(self.worker.loop, self._register_complete, shuffle) return output def split_by_worker( df: pd.DataFrame, column: str, worker_for: pd.Series, ) -> dict[Any, pa.Table]: """ Split data into many arrow batches, partitioned by destination worker """ import numpy as np import pyarrow as pa df = df.merge( right=worker_for.cat.codes.rename("_worker"), left_on=column, right_index=True, how="inner", ) nrows = len(df) if not nrows: return {} # assert len(df) == nrows # Not true if some outputs aren't wanted # FIXME: If we do not preserve the index something is corrupting the # bytestream such that it cannot be deserialized anymore t = pa.Table.from_pandas(df, preserve_index=True) t = t.sort_by("_worker") codes = np.asarray(t.select(["_worker"]))[0] t = t.drop(["_worker"]) del df splits = np.where(codes[1:] != codes[:-1])[0] + 1 splits = np.concatenate([[0], splits]) shards = [ t.slice(offset=a, length=b - a) for a, b in toolz.sliding_window(2, splits) ] shards.append(t.slice(offset=splits[-1], length=None)) unique_codes = codes[splits] out = { # FIXME https://github.com/pandas-dev/pandas-stubs/issues/43 worker_for.cat.categories[code]: shard for code, shard in zip(unique_codes, shards) } assert sum(map(len, out.values())) == nrows return out def split_by_partition(t: pa.Table, column: str) -> dict[Any, pa.Table]: """ Split data into many arrow batches, partitioned by final partition """ import numpy as np partitions = t.select([column]).to_pandas()[column].unique() partitions.sort() t = t.sort_by(column) partition = np.asarray(t.select([column]))[0] splits = np.where(partition[1:] != partition[:-1])[0] + 1 splits = np.concatenate([[0], splits]) shards = [ t.slice(offset=a, length=b - a) for a, b in toolz.sliding_window(2, splits) ] shards.append(t.slice(offset=splits[-1], length=None)) assert len(t) == sum(map(len, shards)) assert len(partitions) == len(shards) return dict(zip(partitions, shards))