U
    f/e'                     @  s
  d Z ddlmZ ddlmZmZmZ ddlZddlm	  m
Z
 ddlmZmZmZ ddlmZmZmZmZmZmZmZmZmZ ddlmZ ddlmZ ddlm  mZ  erdd	l!m"Z" e
j#Z#d
ddddZ$dd Z%dd Z&dd Z'dddddddddZ(dd Z)dS ) zM
Table Schema builders

https://specs.frictionlessdata.io/json-table-schema/
    )annotations)TYPE_CHECKINGAnycastN)DtypeObjFrameOrSeriesJSONSerializable)	is_bool_dtypeis_categorical_dtypeis_datetime64_dtypeis_datetime64tz_dtypeis_integer_dtypeis_numeric_dtypeis_period_dtypeis_string_dtypeis_timedelta64_dtype)CategoricalDtype)	DataFrame)
MultiIndexr   str)xreturnc                 C  sl   t | rdS t| rdS t| r$dS t| s<t| s<t| r@dS t| rLdS t| rXdS t| rddS dS dS )	a  
    Convert a NumPy / pandas type to its corresponding json_table.

    Parameters
    ----------
    x : np.dtype or ExtensionDtype

    Returns
    -------
    str
        the Table Schema data types

    Notes
    -----
    This table shows the relationship between NumPy / pandas dtypes,
    and Table Schema dtypes.

    ==============  =================
    Pandas type     Table Schema type
    ==============  =================
    int64           integer
    float64         number
    bool            boolean
    datetime64[ns]  datetime
    timedelta64[ns] duration
    object          str
    categorical     any
    =============== =================
    integerbooleannumberdatetimedurationanystringN)	r   r	   r   r   r   r   r   r
   r   )r    r   @/tmp/pip-unpacked-wheel-tiezk1ph/pandas/io/json/_table_schema.pyas_json_table_type,   s    r!   c                 C  s   t j| jj rf| jj}t|dkr:| jjdkr:td n(t|dkrbtdd |D rbtd | S | 	 } | jj
dkrdd t| jjD }|| j_n| jjpd| j_| S )	z?Sets index names to 'index' for regular, or 'level_x' for Multi   indexz,Index name of 'index' is not round-trippablec                 s  s   | ]}| d V  qdS level_N
startswith.0r   r   r   r    	<genexpr>b   s     z$set_default_names.<locals>.<genexpr>z;Index names beginning with 'level_' are not round-trippablec                 S  s&   g | ]\}}|d k	r|nd| qS )Nr%   r   )r)   inamer   r   r    
<listcomp>h   s   z%set_default_names.<locals>.<listcomp>)comZall_not_noner#   nameslenr,   warningswarnr   copynlevels	enumerate)dataZnmsr/   r   r   r    set_default_names\   s    


r7   c                 C  s   | j }| jd krd}n| j}|t|d}t|rX|j}|j}dt|i|d< ||d< n*t|rn|jj	|d< nt
|r|jj|d< |S )Nvalues)r,   typeenumconstraintsorderedfreqtz)dtyper,   r!   r
   
categoriesr<   listr   r=   Zfreqstrr   r>   zone)Zarrr?   r,   fieldZcatsr<   r   r   r    !convert_pandas_type_to_json_fieldr   s"    

rD   c                 C  s   | d }|dkrdS |dkr dS |dkr,dS |dkr8d	S |d
krDdS |dkrl|  drfd| d  dS dS n4|dkrd| krd| krt| d d | d dS dS td| dS )a  
    Converts a JSON field descriptor into its corresponding NumPy / pandas type

    Parameters
    ----------
    field
        A JSON field descriptor

    Returns
    -------
    dtype

    Raises
    ------
    ValueError
        If the type of the provided field is unknown or currently unsupported

    Examples
    --------
    >>> convert_json_field_to_pandas_type({"name": "an_int", "type": "integer"})
    'int64'

    >>> convert_json_field_to_pandas_type(
    ...     {
    ...         "name": "a_categorical",
    ...         "type": "any",
    ...         "constraints": {"enum": ["a", "b", "c"]},
    ...         "ordered": True,
    ...     }
    ... )
    CategoricalDtype(categories=['a', 'b', 'c'], ordered=True)

    >>> convert_json_field_to_pandas_type({"name": "a_datetime", "type": "datetime"})
    'datetime64[ns]'

    >>> convert_json_field_to_pandas_type(
    ...     {"name": "a_datetime_with_tz", "type": "datetime", "tz": "US/Central"}
    ... )
    'datetime64[ns, US/Central]'
    r9   r   objectr   Zint64r   Zfloat64r   boolr   timedelta64r   r>   zdatetime64[ns, ]zdatetime64[ns]r   r;   r<   r:   )r@   r<   z#Unsupported or invalid field type: N)getr   
ValueError)rC   typr   r   r    !convert_json_field_to_pandas_type   s.    )

 rL   Tr   rF   zbool | Nonezdict[str, JSONSerializable])r6   r#   primary_keyversionr   c                 C  s"  |dkrt | } i }g }|r~| jjdkrntd| j| _t| jj| jjD ]"\}}t|}||d< || qHn|t| j | j	dkr| 
 D ]\}	}
|t|
 qn|t|  ||d< |r| jjr|dkr| jjdkr| jjg|d< n| jj|d< n|dk	r||d< |rd|d	< |S )
a  
    Create a Table schema from ``data``.

    Parameters
    ----------
    data : Series, DataFrame
    index : bool, default True
        Whether to include ``data.index`` in the schema.
    primary_key : bool or None, default True
        Column names to designate as the primary key.
        The default `None` will set `'primaryKey'` to the index
        level or levels if the index is unique.
    version : bool, default True
        Whether to include a field `pandas_version` with the version
        of pandas that generated the schema.

    Returns
    -------
    schema : dict

    Notes
    -----
    See `Table Schema
    <https://pandas.pydata.org/docs/user_guide/io.html#table-schema>`__ for
    conversion types.
    Timedeltas as converted to ISO8601 duration format with
    9 decimal places after the seconds field for nanosecond precision.

    Categoricals are converted to the `any` dtype, and use the `enum` field
    constraint to list the allowed values. The `ordered` attribute is included
    in an `ordered` field.

    Examples
    --------
    >>> df = pd.DataFrame(
    ...     {'A': [1, 2, 3],
    ...      'B': ['a', 'b', 'c'],
    ...      'C': pd.date_range('2016-01-01', freq='d', periods=3),
    ...     }, index=pd.Index(range(3), name='idx'))
    >>> build_table_schema(df)
    {'fields': [{'name': 'idx', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}], 'primaryKey': ['idx'], 'pandas_version': '0.20.0'}
    Tr"   r   r,   fieldsN
primaryKeyz0.20.0Zpandas_version)r7   r#   r4   r   ziplevelsr/   rD   appendndimitemsZ	is_uniquer,   )r6   r#   rM   rN   schemarO   levelr,   Z	new_fieldcolumnsr   r   r    build_table_schema   s4    6

rZ   c                 C  s   t | |d}dd |d d D }t|d |d| }dd	 |d d D }d
| kr`td||}d|d kr||d d }t|jjdkr|jj	dkrd|j_	ndd |jjD |j_|S )a  
    Builds a DataFrame from a given schema

    Parameters
    ----------
    json :
        A JSON table schema
    precise_float : bool
        Flag controlling precision when decoding string to double values, as
        dictated by ``read_json``

    Returns
    -------
    df : DataFrame

    Raises
    ------
    NotImplementedError
        If the JSON table schema contains either timezone or timedelta data

    Notes
    -----
        Because :func:`DataFrame.to_json` uses the string 'index' to denote a
        name-less :class:`Index`, this function sets the name of the returned
        :class:`DataFrame` to ``None`` when said string is encountered with a
        normal :class:`Index`. For a :class:`MultiIndex`, the same limitation
        applies to any strings beginning with 'level_'. Therefore, an
        :class:`Index` name of 'index'  and :class:`MultiIndex` names starting
        with 'level_' are not supported.

    See Also
    --------
    build_table_schema : Inverse function.
    pandas.read_json
    )precise_floatc                 S  s   g | ]}|d  qS r,   r   r)   rC   r   r   r    r-   M  s     z&parse_table_schema.<locals>.<listcomp>rV   rO   r6   )columnsc                 S  s   i | ]}|d  t |qS r\   )rL   r]   r   r   r    
<dictcomp>P  s    z&parse_table_schema.<locals>.<dictcomp>rG   z<table="orient" can not yet read ISO-formatted Timedelta datarP   r"   r#   Nc                 S  s   g | ]}| d rdn|qS r$   r&   r(   r   r   r    r-   c  s    )
loadsr   r8   NotImplementedErrorZastypeZ	set_indexr0   r#   r/   r,   )jsonr[   tableZ	col_orderZdfZdtypesr   r   r    parse_table_schema(  s(    $



rd   )TNT)*__doc__
__future__r   typingr   r   r   r1   Zpandas._libs.jsonZ_libsrb   Zpandas._typingr   r   r   Zpandas.core.dtypes.commonr	   r
   r   r   r   r   r   r   r   Zpandas.core.dtypes.dtypesr   Zpandasr   Zpandas.core.commoncorecommonr.   Zpandas.core.indexes.multir   r`   r!   r7   rD   rL   rZ   rd   r   r   r   r    <module>   s*   ,0F   Z