""" Tests for DataFrame.mask; tests DataFrame.where as a side-effect. """ import numpy as np from pandas import ( NA, DataFrame, Series, StringDtype, isna, ) import pandas._testing as tm class TestDataFrameMask: def test_mask(self): df = DataFrame(np.random.randn(5, 3)) cond = df > 0 rs = df.where(cond, np.nan) tm.assert_frame_equal(rs, df.mask(df <= 0)) tm.assert_frame_equal(rs, df.mask(~cond)) other = DataFrame(np.random.randn(5, 3)) rs = df.where(cond, other) tm.assert_frame_equal(rs, df.mask(df <= 0, other)) tm.assert_frame_equal(rs, df.mask(~cond, other)) # see GH#21891 df = DataFrame([1, 2]) res = df.mask([[True], [False]]) exp = DataFrame([np.nan, 2]) tm.assert_frame_equal(res, exp) def test_mask_inplace(self): # GH#8801 df = DataFrame(np.random.randn(5, 3)) cond = df > 0 rdf = df.copy() return_value = rdf.where(cond, inplace=True) assert return_value is None tm.assert_frame_equal(rdf, df.where(cond)) tm.assert_frame_equal(rdf, df.mask(~cond)) rdf = df.copy() return_value = rdf.where(cond, -df, inplace=True) assert return_value is None tm.assert_frame_equal(rdf, df.where(cond, -df)) tm.assert_frame_equal(rdf, df.mask(~cond, -df)) def test_mask_edge_case_1xN_frame(self): # GH#4071 df = DataFrame([[1, 2]]) res = df.mask(DataFrame([[True, False]])) expec = DataFrame([[np.nan, 2]]) tm.assert_frame_equal(res, expec) def test_mask_callable(self): # GH#12533 df = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) result = df.mask(lambda x: x > 4, lambda x: x + 1) exp = DataFrame([[1, 2, 3], [4, 6, 7], [8, 9, 10]]) tm.assert_frame_equal(result, exp) tm.assert_frame_equal(result, df.mask(df > 4, df + 1)) # return ndarray and scalar result = df.mask(lambda x: (x % 2 == 0).values, lambda x: 99) exp = DataFrame([[1, 99, 3], [99, 5, 99], [7, 99, 9]]) tm.assert_frame_equal(result, exp) tm.assert_frame_equal(result, df.mask(df % 2 == 0, 99)) # chain result = (df + 2).mask(lambda x: x > 8, lambda x: x + 10) exp = DataFrame([[3, 4, 5], [6, 7, 8], [19, 20, 21]]) tm.assert_frame_equal(result, exp) tm.assert_frame_equal(result, (df + 2).mask((df + 2) > 8, (df + 2) + 10)) def test_mask_dtype_bool_conversion(self): # GH#3733 df = DataFrame(data=np.random.randn(100, 50)) df = df.where(df > 0) # create nans bools = df > 0 mask = isna(df) expected = bools.astype(object).mask(mask) result = bools.mask(mask) tm.assert_frame_equal(result, expected) def test_mask_pos_args_deprecation(self): # https://github.com/pandas-dev/pandas/issues/41485 df = DataFrame({"a": range(5)}) expected = DataFrame({"a": [-1, 1, -1, 3, -1]}) cond = df % 2 == 0 msg = ( r"In a future version of pandas all arguments of DataFrame.mask except for " r"the arguments 'cond' and 'other' will be keyword-only" ) with tm.assert_produces_warning(FutureWarning, match=msg): result = df.mask(cond, -1, False) tm.assert_frame_equal(result, expected) def test_mask_try_cast_deprecated(frame_or_series): obj = DataFrame(np.random.randn(4, 3)) if frame_or_series is not DataFrame: obj = obj[0] mask = obj > 0 with tm.assert_produces_warning(FutureWarning): # try_cast keyword deprecated obj.mask(mask, -1, try_cast=True) def test_mask_stringdtype(): # GH 40824 df = DataFrame( {"A": ["foo", "bar", "baz", NA]}, index=["id1", "id2", "id3", "id4"], dtype=StringDtype(), ) filtered_df = DataFrame( {"A": ["this", "that"]}, index=["id2", "id3"], dtype=StringDtype() ) filter_ser = Series([False, True, True, False]) result = df.mask(filter_ser, filtered_df) expected = DataFrame( {"A": [NA, "this", "that", NA]}, index=["id1", "id2", "id3", "id4"], dtype=StringDtype(), ) tm.assert_frame_equal(result, expected)